1)

 In a $\triangle$ PQR, P is the largest angle and  $\cos p=\frac{1}{3}$ . Further in circle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of Pn, QL, and RM are consecutive even integers. Then  possible length(s) of the side(s)  of the triangle is (are)


A) 16

B) 18

C) 24

D) 22

Answer:

Option B,D

Explanation:

Concept involved

 When ever cosine of angle and sides are given or to find out , we should always use cosine law

 i.e,    $\cos A= \frac{b^{2}+c^{2}-a^{2}}{2bc}$

     $\cos B= \frac{a^{2}+c^{2}-b^{2}}{2ac}$

$\cos C= \frac{a^{2}+b^{2}-c^{2}}{2ba}$

1352021121_m4.JPG

$\therefore$   $\cos P= \frac{b^{2}+c^{2}-a^{2}}{2bc}$

 $\Rightarrow \frac{1}{3}=\frac{(2n+4)^{2}+(2n+2)^{2}-(2n+6)^{2}}{2(2n+4)(2n+2)}$

    ($\because$    cos P= $ \frac{1}{3}$)

 $\Rightarrow \frac{4n^{2}-16}{8(n+1)(n+2)}=\frac{1}{3}$

  $\Rightarrow \frac{n^{2}-4}{2(n+1)(n+2)}=\frac{1}{3}$

   $\Rightarrow \frac{(n-2)}{2(n+1)}=\frac{1}{3}$

$\Rightarrow$     3n-6=2n+2 $\Rightarrow$ n=8

$\therefore$   sides are 2n+2, 2n+4,2n+6

$\Rightarrow$  18,20,22