Answer:
Option A,C
Explanation:
Concept involved
Here, thr length of intercept on y-axis
$\Rightarrow$ $ 2\sqrt{f^{2}-c}$
and if circle touches x-axis
$\Rightarrow$ $ g^{2}=c$
for $x^{2}+y^{2}+2gx+2fy+c=0$
here, $x^{2}+y^{2}+2gx+2fy+c=0$
Passes through (3,0)
$\Rightarrow$ 9+6g+c=0 ........(i)
$g^{2}=c$ ..........(ii)
and $2\sqrt{f^{2}-c}=2\sqrt{7}$
$f^{2}-c=7$ .........(iii)
From Eqs .(i) and (ii), we get
$g^{2}+6g+9=0$
(g+3)2 =0
g=-3
and c=9 $\therefore$ f2=16
$f=\pm 4$
$\therefore$ $x^{2}+y^{2}-6x \pm 8y+9=0$