Answer:
Option A,D
Explanation:
Concept involved
If two straight lines are coplannar
i.e, x−x1a1=y−y1b1=z−z1c1 and
x−x2a2=y−y2b2=z−z2c2 are coplannar

Then ,(x2-x1 , y2-y1,z2-z1), (a1,b1,c1) and (a2,b2,c2) are coplanar
i,e,
[x2−x1y2−y1z2−z1a1b1c1a2b2c2]=0
Here x=5, y3−α=z−2
⇒x−50=y−0−(α−3)=z−0−2......(i)
and x=α,y−1=z2−α
⇒x−α0=y−0−1=z−02−α .....(ii)
⇒[5−α0003−α−20−12−α]=0
⇒ (5−α)[(3−α)(2−α)−2]=0
⇒ (5−α)[α2−5α+4]=0
⇒ (5−α)(α−1)(α−4)=0
α =1,4,5