Answer:
Option A,D
Explanation:
Concept involved
If two straight lines are coplannar
i.e, $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and
$\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ are coplannar
Then ,(x2-x1 , y2-y1,z2-z1), (a1,b1,c1) and (a2,b2,c2) are coplanar
i,e,
$\begin{bmatrix}x_{2}-x_{1} & y_{2}-y_{1}&z_{2}-z_{1} \\a_{1} & b_{1}&c_{1}\\a_{2}&b_{2}&c_{2} \end{bmatrix}=0$
Here x=5, $\frac{y}{3-\alpha}=\frac{z}{-2}$
$\Rightarrow \frac{x-5}{0}=\frac{y-0}{-(\alpha-3)}=\frac{z-0}{-2}$......(i)
and $x=\alpha,\frac{y}{-1}=\frac{z}{2-\alpha}$
$\Rightarrow \frac{x-\alpha}{0}=\frac{y-0}{-1}=\frac{z-0}{2-\alpha}$ .....(ii)
$\Rightarrow \begin{bmatrix}5-\alpha & 0&0\\0 & 3-\alpha&-2\\0&-1&2-\alpha \end{bmatrix}=0$
$\Rightarrow$ $ (5-\alpha)[(3-\alpha)(2-\alpha)-2]=0$
$\Rightarrow$ $(5-\alpha)[\alpha^{2}-5\alpha+4]=0$
$\Rightarrow $ $ (5-\alpha)(\alpha-1)(\alpha-4)=0$
$\alpha$ =1,4,5