Processing math: 100%


1)

Let α(a) and β(a) be the roots of the equation

(31+a1)x2(1+a1)x

+(61+a1)=0 where a>-1,

 Then , lima0+α(a) and lima0+β(a) are 


A) 52and 1

B) 12 and - 1

C) 72 and 2

D) 92 and 3

Answer:

Option B

Explanation:

Concept Involved To make the quadratic into the simple form we should eliminate radical sign 

Description of Situation As forgiven equation when  a0  equation reduces to identity in x.

i.e, ax2+bx+c=0 for all xϵR or a=b=c 0

Thus, first we should make above equation indepenrlent from coefficients as 0.

 Sol. Let (a+1=t6 Thus, when a0,t1

   (t21)x2+(t31)x+(t1)=0

  (t1)(t+1)x2+(t2+t+1)x+1=0

 As t1 

                     2x2+3x+1=0

 2x2+2x+x+1=0

   (2x+1)(x+1)=0

 Thus, x=-1, -1/2

 or  lima0+α(a)=12

 and   lima0+β(a)=1