Answer:
Option C
Explanation:
Concept involved use of Newton leibnits formula
i.e, ddx{∫f(x)g(x)ϕ(t)dt}=ϕ(f(x)).f′(x)−ϕ(g(x0).g′(x)
Sol. Here , f(x)(1−x)2sin2x+x2, for all x
g(x)=∫x1(2(t−1)t+1−log(t))f(t)dt
∀xϵ(1,∞)
Here, f(x)+2x=(1−x)2.sin2x+x2+2x.............(i)
where P:f(x)+2x=2(1+x)2 ...............(ii)
∴ 2(1+x2)=(1−x)2sin2x+x2+2x
⇒ (1−x)2sin2x=x2−2x+2
⇒ (1−x)2sin2x=(1−x)2+1
⇒ (1−x)2cos2x=−1
which is never possible
∴ p is false
Again h(x)=2f(x)+1-2x (1+x)
h(1)=2f(1)+1-4=-3
as h(0) h(1)<0
⇒ h(x) must have a solution
∴ Q is true