Processing math: 100%


1)

let f(x)=(1x)2sin2x+x2 for all x ϵR and 

let g(x)=x1(2(t1)t+1lnt)f(t)dt, for all x ϵ(1,) 

consider the statements

P:  There exists some xϵR such that 

  f(x)+2x=2(1+x2)

Q:There exists some  xϵR such that 

   2f(x)+1=2x(1+x)

 Then 


A) Both P and Q are true

B) P is true and Q is false

C) P is false and Q is true

D) Both P and Q are false

Answer:

Option C

Explanation:

 Concept involved use of Newton leibnits formula

 i.e, ddx{f(x)g(x)ϕ(t)dt}=ϕ(f(x)).f(x)ϕ(g(x0).g(x)

  Sol. Here , f(x)(1x)2sin2x+x2, for all x

     g(x)=x1(2(t1)t+1log(t))f(t)dt

xϵ(1,)

Here, f(x)+2x=(1x)2.sin2x+x2+2x.............(i)

 where P:f(x)+2x=2(1+x)2 ...............(ii)

   2(1+x2)=(1x)2sin2x+x2+2x

  (1x)2sin2x=x22x+2

(1x)2sin2x=(1x)2+1

   (1x)2cos2x=1

 which is never possible

  p is false

 Again h(x)=2f(x)+1-2x (1+x)

            h(1)=2f(1)+1-4=-3

 as  h(0) h(1)<0

   h(x) must have a solution

Q is true