Answer:
Option D
Explanation:
Concept involved $n^{th}$ term of HP
$t_{n}=\frac{1}{a+(n-1)d}$
Sol. Here , $a_{1}=5, a_{20}=25$ for HP
$\therefore$ $\frac{1}{a}=5$ and $\frac{1}{a+19d}=25$
$\Rightarrow$ $\frac{1}{5}+19d=\frac{1}{25}$
$\Rightarrow$ $19d=\frac{1}{25}-\frac{1}{5}=-\frac{4}{25}$
$\therefore$ $d= \frac{-4}{19 \times 25}$
Since, $a_{n}$ <0
$\therefore$ $\frac{1}{5}+(n-1)d <0$
$\Rightarrow$ $\frac{1}{5}-\frac{4}{19 \times 25}(n-1) <0$
$\Rightarrow$ $(n-1) > \frac{95}{4}$
$\Rightarrow$ $n > 1+\frac{95}{4}$ or $n > 24.75$
least positive value of n=25