Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let a1,a2,a3....... be in a harmonic progression with  a1=5 and a20=25. The least  positive integer n for which an<0 is 


A) 22

B) 23

C) 24

D) 25

Answer:

Option D

Explanation:

 Concept involved nth term of HP 

  tn=1a+(n1)d

 Sol. Here , a1=5,a20=25 for HP

    1a=5 and 1a+19d=25 

15+19d=125

   19d=12515=425

    d=419×25

 Since, an <0

   15+(n1)d<0

  15419×25(n1)<0

   (n1)>954

   n>1+954 or n>24.75

 least positive  value of n=25