Processing math: 100%


1)

let f(x)=(1x)2sin2x+x2 for all x ϵR and 

let g(x)=x1(2(t1)t+1lnt)f(t)dt, for all x ϵ(1,) 

which of the following is true?


A) g is increasing on (1,)

B) g is decreasing on (1,)

C) g is increasing on (1, 2) and decreasing on (2,)

D) g is decreasing on (1, 2) and increasing on (2,)

Answer:

Option B

Explanation:

 Concept involved use of Newton leibnits formula

 i.e, ddx{f(x)g(x)ϕ(t)dt}=ϕ(f(x)).f(x)ϕ(g(x)).g(x)

  Sol. Here , f(x)(1x)2sin2x+x2, for all x

     g(x)=x1(2(t1)t+1log(t))f(t)dt

xϵ(1,)

Here, 

f(x)=(1x)2sin2x+x2 for all x 

 and  g(x)=x1(2(t1)t+1logt)f(t)dt, 

    g(x)={2(x1)x+1logx}f(x)(+ve)....(i)

 for   g'(x) to be increasing or decreasing 

Let ϕ(x)=2(x1)(x+1)logx

 ϕ(x)=4(x+1)21x=(x1)2x(x+1)2

 ϕ(x)<0, for x >1

   ϕ(x)<ϕ(1)ϕ(x)<0......(ii)

 For  Eqs.(i) and (ii) , we get

 g(x)<0 for xϵ(1,)

  g(x) is decreasing for xϵ(1,)