Answer:
Option B
Explanation:
Concept involved use of Newton leibnits formula
i.e, ddx{∫f(x)g(x)ϕ(t)dt}=ϕ(f(x)).f′(x)−ϕ(g(x)).g′(x)
Sol. Here , f(x)(1−x)2sin2x+x2, for all x
g(x)=∫x1(2(t−1)t+1−log(t))f(t)dt
∀xϵ(1,∞)
Here,
f(x)=(1−x)2sin2x+x2 for all x
and g(x)=∫x1(2(t−1)t+1−logt)f(t)dt,
⇒ g′(x)={2(x−1)x+1−logx}f(x)(+ve)....(i)
for g'(x) to be increasing or decreasing
Let ϕ(x)=2(x−1)(x+1)−logx
ϕ′(x)=4(x+1)2−1x=−(x−1)2x(x+1)2
ϕ′(x)<0, for x >1
⇒ ϕ(x)<ϕ(1)⇒ϕ(x)<0......(ii)
For Eqs.(i) and (ii) , we get
g′(x)<0 for xϵ(1,∞)
∴ g(x) is decreasing for xϵ(1,∞)