Answer:
Option A,B,C,D
Explanation:
f(x)={−x−π2,x≤−π2−cosx,−π2<x≤0x−1,0<x≤1logx,x>1,
continuity at x=-π2
f(−π2)=−(−π2)−π2=0
RHL= ⇒ limh→0−cos(−π2+h)=0
∴ continuous at x=0
Continuity at x=0 ⇒ f(0)=-1$
RHL⇒limh→0(0+h)−1=−1
∴ continuous at x=0
Continuity at x=1;f(1)=0
RHL⇒ limh→0log(1+h)=0
∴ continuous at x=1
Here, f(x)={−1,x≤−π2sinx,−π2<x≤01,0<x≤11x,x>1,
Differentiable at x=0
LHD=0, RHD=1
∴ not differentiable at x=0
Differentiable at x=1
LHD=1,RHD=1
∴ Differentiable at x=1
also, for x=−32⇒f(x)=−x−32
∴ differentiable at x= −32