Answer:
Option A
Explanation:
Here , f(x)=\frac{b-x}{1-bx}
where, 0<b<1,0<x<1
For function to be invertible it should
be one-one onto
\therefore Check range
Let f(x)=y \Rightarrow y=\frac{b-x}{1-bx}
\Rightarrow y-bxy=b-x \Rightarrow x(1-by)=b-y
\Rightarrow x= \frac{b-y}{1-by}
where , 0<x<1
\therefore 0 < \frac{b-y}{1-by} <1
\frac{b-y}{1-by} >0 and \frac{b-y}{1-by} <1

\Rightarrow y<b or y > \frac{1}{b} .......(i)
\frac{(b-1)(y+1)}{1+by} <-1 < y < \frac{1}{b}.......(ii)
From eqs.(i) and (ii) , we get
Y \in \left(-1, \frac{1}{b}\right)\subset Codomain
Thus , f(x) is not invertible