<<12345>>
6.

Let $ \omega = e^{i \pi/3}$ and a,b,c,x,y,z be non  zero complex numbers such that a+b+c=x, $a+b \omega+c\omega^{2}=y, a+b \omega^{2}+c \omega =z$

then the value of $\frac{|x|^{2}+|y|^{2}+|z|^{2}}{|a|^{2}+|b|^{2}+|c|^{2}}$ is 


A) 3

B) 5

C) 4

D) 6



7.

Let $a =-\widehat{i}-\widehat{k},b=-\widehat{i}+\widehat{j}$ and $c= \widehat{i}+2 \widehat{j}+3 \widehat{k}$  be the three vectors. If r is a  vector such that  r x b=c x b and r.a=0 , then the value of r.b is 


A) 2

B) 3

C) 4

D) 9



8.

Let  $y'(x)+y(x)g'(x)=g(x)g'(x)y(0)=0, x \epsilon R,$ where f'(x)  denoted $\frac{d f(x)}{dx}$ and g(x) is a given non-constant differentiable function on R with g(0)=g(2)=0,  Then the value of y(2) is .....


A) 0

B) 4

C) 5

D) 6



9.

Let $f: (0,1) \rightarrow R$ be defined by $f(x)=\frac{b-x}{1-bx}$ where b is a constant such that 0<b<1, then 


A) f if not invertible on (0,1)

B) $f \neq f^{-1}$ on (0,1) and $f'(b)= \frac{1}{f'(0)}$

C) $f=f^{-1}$ on (0,1) and $f'(b)=\frac{1}{f'(0)}$

D) $f^{-1}$ is differentiable on (0,1)



10.

Let E and F be two independent events. The probability that exactly one of them occurs is 11/25 and the probability of none of them occurring is 2/25.lf P(T) denotes the probability of occurrence of the event T, then


A) $P(E)=\frac{4}{5},P(F)=\frac{3}{5}$

B) $P(E)=\frac{1}{5},P(F)=\frac{2}{5}$

C) $P(E)=\frac{2}{5},P(F)=\frac{1}{5}$

D) $P(E)=\frac{3}{5},P(F)=\frac{4}{5}$



<<12345>>