Answer:
Option A
Explanation:
Here , $f(x)=\frac{b-x}{1-bx}$
where, 0<b<1,0<x<1
For function to be invertible it should
be one-one onto
$\therefore$ Check range
Let f(x)=y $\Rightarrow y=\frac{b-x}{1-bx}$
$\Rightarrow$ $y-bxy=b-x \Rightarrow x(1-by)=b-y$
$ \Rightarrow$ $x= \frac{b-y}{1-by}$
where , 0<x<1
$\therefore$ $0 < \frac{b-y}{1-by} <1$
$\frac{b-y}{1-by} >0$ and $\frac{b-y}{1-by} <1$
$\Rightarrow$ y<b or $y > \frac{1}{b}$ .......(i)
$\frac{(b-1)(y+1)}{1+by} <-1 < y < \frac{1}{b}$.......(ii)
From eqs.(i) and (ii) , we get
$Y \in \left(-1, \frac{1}{b}\right)\subset $ Codomain
Thus , f(x) is not invertible