Answer:
Option A
Explanation:
$|A| \neq 0$, as non-singular
$\begin{bmatrix}1 & a&b \\\omega & 1&c\\\omega^{2}&\omega&1 \end{bmatrix} \neq=0$
$\Rightarrow$ $1(1-c \omega)-a(\omega-c \omega^{2})+b(\omega^{2}-\omega^{2}) \neq=0$
$\Rightarrow$ $1- c \omega-a \omega+ac \omega^{2} \neq 0$
$\Rightarrow$ $(1-c \omega)(1-a \omega) \neq 0$
$\Rightarrow$ $a\neq \frac{1}{\omega}, c \neq \frac{1}{\omega} \Rightarrow a= \omega , c= \omega$
and $b \epsilon( \omega , \omega^{2}) \Rightarrow 2$ solutions