1) Let ω≠1 be a cube root of unity and S be the set of all non-singular matrices of the form [1abω1cω2ω1], where each of a,b and c is either ω or ω2 . Then, the number of distinct matrices in the set S is A) 2 B) 6 C) 4 D) 8 Answer: Option AExplanation:|A|≠0, as non-singular [1abω1cω2ω1]≠=0 ⇒ 1(1−cω)−a(ω−cω2)+b(ω2−ω2)≠=0 ⇒ 1−cω−aω+acω2≠0 ⇒ (1−cω)(1−aω)≠0 ⇒ a≠1ω,c≠1ω⇒a=ω,c=ω and bϵ(ω,ω2)⇒2 solutions