1) The value of b for which the equations x2+bx−1=0,x2+x+b=0 have one root in common is A) −√2 B) −i√3 C) −i√5 D) √2 Answer: Option BExplanation:If a1x2+b1x+c1=0 and a2x2+b2x+c2=0 Have a comon real root , then ⇒ (a1c2−a2c1)2=(b1c2−b2c1)(a1b2−a2b1) ∵ x2+bx−1=0, x2+x+b , have a common root ⇒(1+b)2=(b2+1)(1−b) ⇒ b2+2b+1=b2−b3+1−b ⇒ b3+3b=0⇒b(b2+3)=0 ⇒ b=0,±√3i