1)

Let L be a normal to the parabola y2 = 4x. lf L passes through the point (9, 6), then L is given by


A) y-x+3=0

B) y+3x-33=0

C) y+x-15=0

D) y-2x+12=0

Answer:

Option A,B,D

Explanation:

Normal to $y^{2}=4x$ is 

 y-mx-2m-m3 which passes through (9,6)

 Now,  $6=9m-2m-m^{3}$

$m^{3}-7m+6=0 \Rightarrow m=1,2,-3$

 $\therefore$ Equation of normals are

 y-x+3=0

 y+3x-33=0  and y-2x+12=0