Answer:
Option D
Explanation:
Equation of circle passing ihrough a point (x1,y1) and touching the straight
line L. is given by
$(x-x_{1})^{2}+(y-y_{1})^{2}= \lambda L=0$
$\therefore$ Equation sf circle passing through (0, 2) and touching x = 0.
Now, $(x-0)^{2}+(y-2)^{2}+\lambda x=0$...(i)
Also, it passes through (-1,0)
so, $1+4-\lambda=0 \Rightarrow 0 \Rightarrow \lambda=5$
Eq.(i) becomes
$x^{2}+y^{2}-4y+4+5x=0$
$\Rightarrow$ $x^{2}+y^{2}+5x-4y+4=0$
For x- intercept put y=0
$x^{2}+5x+4=0$
$\Rightarrow$ $(x+1)(x+4)=0$
$\therefore$ x=-1,-4