Answer:
Option A
Explanation:
Here , f(x)=b−x1−bx
where, 0<b<1,0<x<1
For function to be invertible it should
be one-one onto
∴ Check range
Let f(x)=y ⇒y=b−x1−bx
⇒ y−bxy=b−x⇒x(1−by)=b−y
⇒ x=b−y1−by
where , 0<x<1
∴ 0<b−y1−by<1
b−y1−by>0 and b−y1−by<1

⇒ y<b or y>1b .......(i)
(b−1)(y+1)1+by<−1<y<1b.......(ii)
From eqs.(i) and (ii) , we get
Y∈(−1,1b)⊂ Codomain
Thus , f(x) is not invertible