Processing math: 100%


1)

Let f:(0,1)R be defined by f(x)=bx1bx where b is a constant such that 0<b<1, then 


A) f if not invertible on (0,1)

B) ff1 on (0,1) and f(b)=1f(0)

C) f=f1 on (0,1) and f(b)=1f(0)

D) f1 is differentiable on (0,1)

Answer:

Option A

Explanation:

Here , f(x)=bx1bx

 where, 0<b<1,0<x<1

For function to be invertible it should
be one-one onto

  Check range

 Let    f(x)=y y=bx1bx

   ybxy=bxx(1by)=by 

   x=by1by

 where , 0<x<1

  0<by1by<1

  by1by>0 and by1by<1

 1412202116_g2.PNG

 

     y<b  or y>1b .......(i)

  (b1)(y+1)1+by<1<y<1b.......(ii)

 From eqs.(i) and (ii) , we get

  Y(1,1b) Codomain

 Thus , f(x)  is not invertible