Answer:
Option A,D
Explanation:
$P( E \cup F)-P(E \cap F)=\frac{11}{25}$.....(i)
(i.e, only E or only F)
Neither of them occurs =$\frac{2}{25}$
$\Rightarrow$ $P(\overline{E} \cap \overline{F})=\frac{2}{25}$......(ii)
From . Eq.(i), we get
$P(E)+P(F)-2P(E \cap F)=\frac{11}{25}$ ...(iiI)
From . Eq.(ii), we get
$(1-P(E))(1-P(F))=\frac{2}{25}$
$\Rightarrow$ $1-P(E)-P(F)+P(E).P(F)=\frac{2}{25}$.....(iv)
From eqs.(iii) and (iv) , we get
$P(E)+P(F)=\frac{7}{5}$ $P(E).P(F)=\frac{12}{25}$
$\therefore$ $P(E) .\left\{ \frac{7}{5}-P(E)\right\}=\frac{12}{25}$
$\Rightarrow$ $(P(E))^{2}-\frac{7}{5} P(E)+\frac{12}{25}=0$
$\Rightarrow$ $\left(P(E)-\frac{3}{5}\right)\left(P(E)-\frac{4}{5}\right)=0$
$\therefore$ $P(E)= \frac{3}{4}$ or $\frac{4}{5}$ $\Rightarrow P(F)= \frac{4}{5}$ or $\frac{3}{5}$