Processing math: 56%


1)

Let E and F be two independent events. The probability that exactly one of them occurs is 11/25 and the probability of none of them occurring is 2/25.lf P(T) denotes the probability of occurrence of the event T, then


A) P(E)=45,P(F)=35

B) P(E)=15,P(F)=25

C) P(E)=25,P(F)=15

D) P(E)=35,P(F)=45

Answer:

Option A,D

Explanation:

14122021196_g3.PNG

  P(EF)P(EF)=1125.....(i)

 (i.e, only E or only F)

14122021301_g4.PNG

 Neither of them occurs =225

     P(¯E¯F)=225......(ii)

 From . Eq.(i), we get

 P(E)+P(F)2P(EF)=1125 ...(iiI)

 From . Eq.(ii), we get

 (1P(E))(1P(F))=225

  1P(E)P(F)+P(E).P(F)=225.....(iv)

 From eqs.(iii)  and (iv) , we get

 P(E)+P(F)=75  P(E).P(F)=1225

   P(E) .\left\{ \frac{7}{5}-P(E)\right\}=\frac{12}{25}

\Rightarrow   (P(E))^{2}-\frac{7}{5} P(E)+\frac{12}{25}=0

 \Rightarrow  \left(P(E)-\frac{3}{5}\right)\left(P(E)-\frac{4}{5}\right)=0

 \therefore    P(E)= \frac{3}{4} or \frac{4}{5}  \Rightarrow  P(F)= \frac{4}{5} or \frac{3}{5}