Answer:
Option A,D
Explanation:

P(E∪F)−P(E∩F)=1125.....(i)
(i.e, only E or only F)

Neither of them occurs =225
⇒ P(¯E∩¯F)=225......(ii)
From . Eq.(i), we get
P(E)+P(F)−2P(E∩F)=1125 ...(iiI)
From . Eq.(ii), we get
(1−P(E))(1−P(F))=225
⇒ 1−P(E)−P(F)+P(E).P(F)=225.....(iv)
From eqs.(iii) and (iv) , we get
P(E)+P(F)=75 P(E).P(F)=1225
∴ P(E).{75−P(E)}=1225
⇒ (P(E))2−75P(E)+1225=0
⇒ (P(E)−35)(P(E)−45)=0
∴ P(E)=34 or 45 ⇒P(F)=45 or 35