1) Let $ \omega = e^{i \pi/3}$ and a,b,c,x,y,z be non zero complex numbers such that a+b+c=x, $a+b \omega+c\omega^{2}=y, a+b \omega^{2}+c \omega =z$ then the value of $\frac{|x|^{2}+|y|^{2}+|z|^{2}}{|a|^{2}+|b|^{2}+|c|^{2}}$ is A) 3 B) 5 C) 4 D) 6 Answer: Option AExplanation: Here, $\omega= e^{12 \pi/3}$, then only integer solution exists Then $\frac{|x|^{2}+|y|^{2}+|z|^{2}}{|a|^{2}+|b|^{2}+|c|^{2}}$=3