Answer:
Option A
Explanation:
$\frac{dy}{dx}+y.g'(x)=g(x)g'(x)$
IF= $e^{\int g'(x)dx}= e^{g(x)}$
$\therefore$ solution is
$y(e^{g(x)})=\int g(x).g'(x).e^{g(x)} dx+C$
Put $g(x)=t, g'(x)dx=dt$
$y(e^{g(x)})=\int t.e^{t} dt+C$
=$t.e^{t}-\int 1.e^{t} dt+C=t.e^{t}-e^{t}+C$
$y e^{g(x)}=(g(x)-1)e^{g(x)}+C$........(i)$
Given , y(0)=0,g(0)=g(2)=0
$\therefore$ Eq.(i) becomes
$y(0).e^{g(0)}=(g(0)-1).e^{g(0)}+C$
$\Rightarrow$ $0= (-1).1+C \Rightarrow C=1$
$\therefore$ $y(x).e^{g(x)}=(g(x)-1)e^{g(x)}+1$
$\Rightarrow$ $ y(2).e^{g(2)}=(g(2)-1)e^{g(2)}+1$
where g(2)=0
$\Rightarrow$ $ y(2).1= (-1).1+1 \Rightarrow y(2)=0$