Answer:
Option D
Explanation:
r x b= c x b
$\Rightarrow$ (r-c) x b=0 $\Rightarrow$ $r-c+\lambda b$
or $r=c+\lambda b$..........(i)
Given, r.a=0 , taking dot product with a for eq.(i)
Now, $r.a=a.c+\lambda a.b$
$\therefore$ $\lambda=\frac{\overrightarrow{a}.\overrightarrow{c}}{a.b}$ $[\because \overrightarrow{r}.\overrightarrow{a}=0]$......(ii)
From Eq.(i) and (ii) , we get
$r=c-\frac{a.c}{a.b}b$
Taking dot with b, we get
$r.b=c.b-\frac{a.c}{a.b} (b.b)$
where, $\begin{bmatrix}a=-\widehat{i}-\widehat{k} \\b=-\widehat{i}+\widehat{j}\\c=\widehat{i}+2\widehat{j}+3\widehat{k} \end{bmatrix}$
=$(-1+2)- \frac{(-1-3)}{(1)}(1+1)=1+8=9$