1)

Match the statements given in Column I with the intervals/union of intervals given in Column II

1312202151_m2.PNG


A) (A) $\rightarrow$ (s, (B) $\rightarrow$ (t,(C) $\rightarrow$ (r),(D) $\rightarrow$ (t)

B) (A) $\rightarrow$ (t), (B) $\rightarrow$ (s),(C) $\rightarrow$ (s),(D) $\rightarrow$ (s)

C) (A) $\rightarrow$ (t), (B) $\rightarrow$ (s),(C) $\rightarrow$ (r),(D) $\rightarrow$ (s)

D) (A) $\rightarrow$ (t), (B) $\rightarrow$ (s),(C) $\rightarrow$ (s),(D) $\rightarrow$ (r)

Answer:

Option A

Explanation:

 (A) Given , $|z|=1 \Rightarrow  z. \overline{z}=1$

$\therefore$  $\frac{2iz}{1-z^{2}}=\frac{2iz}{z.\overline{z}-z^{2}}=\frac{2i}{\overline{z}-z},$

Let z=x+iy

 $\therefore$  $z-\overline{z}=2iy= \frac{2i}{-2iy}=-\frac{1}{y}$ .......(i)

 where, $y=\sqrt{1-x^{2}}$

 $\therefore$   $-1\leq y\leq1 \Rightarrow -1 \leq y$

 and $y\leq 1 \Rightarrow-1 \geq \frac{1}{y}$   and  $\frac{1}{y}\geq 1$

 $\Rightarrow$  $Re\left(\frac{2iz}{1-z^{2}}\right)\epsilon (-\infty ,-1)\cup[1, \infty)$

 (B) $f(x)= \sin^{-1}\left(\frac{8(3^{x-2})}{1-3^{2(x-1)}}\right)$,

 For domain, $-1\leq \frac{8(3^{x-2})}{1-3^{2(x-1)}}\leq1$

 $\Rightarrow$  $-1\leq \frac{9.(3^{x-2})-(3^{x-2})}{1-3^{2(x-1)}}\leq1$

 $\therefore$    $-1\leq \frac{3^{x}-3^{x-2}}{1-3^{x}. 3^{(x-2)}}\leq1$

       $ \frac{3^{x}-3^{x-2}}{1-3^{x}. 3^{(x-2)}}\geq -1$

 $\Rightarrow$   $ \frac{(3^{x}-1)(3^{x-2}-1)}{(3^{x+1}+1). 3^{x-1}-1}\geq 0$

 14122021731_d3.PNG

 $\Rightarrow$   $x\epsilon (-\infty,0] \cup [1, \infty)$

 and   $\frac{3^{x}-3^{x-2}}{1-3^{x}.3^{x-2}}\leq 1$

 $\Rightarrow$   $\frac{(3^{x-2}-1)(3^{x}+1)}{(3^{x-1}+1).(3^{x-1}-1)}\geq 0$

 1412202143_d2.PNG

 

and    $x \epsilon (-\infty,1) \cup [2, \infty)$

 $\therefore$  $x \epsilon (-\infty,0] \cup [2, \infty)$

(C)  $f(\theta)=\begin{bmatrix}1 & \tan \theta&1 \\- \tan \theta & 1& \tan \theta\\ -1& -\tan \theta &1 \end{bmatrix}$

   $R_{1} \rightarrow R_{1}+R_{3}$

$f(\theta)=\begin{bmatrix}0 &0 &2 \\- \tan \theta & 1& \tan \theta\\ -1& -\tan \theta &1 \end{bmatrix}$

=  $2(\tan^{2} \theta+1)=2 \sec^{2} \theta \geq 2$

 $f(\theta) \epsilon [2, \infty)$

(D)  $f(x)=x^{3/2}(3x-10);x \geq 0$

 $f'(x)=x^{3/2}.3+\frac{3}{2}.x^{1/2}(3x-10)$

    $=3x^{1/2}\left\{x+\frac{1}{2}(3x-10)\right\}$

   $=\frac{3}{2}x^{1/2}\left\{2x+3x-10\right\}$

  $=\frac{15}{2}x^{1/2}(x-2)$

 14122021989_d1.PNG

 

 $\therefore$   $x\geq 2$