Answer:
Option D
Explanation:
Let M=[a1a2a3b1b2b3c1c2c3]
∴ M[010]=[−123],M[1−10]=[11−1]
M[111]=[0012]
⇒[a2b2c2]=[−123],[a1−a2b1−b2c1−c2]=[11−1]
,[a1+a2+a3b1+b2+b3c1+c2+c3]=[0012]
⇒ a2=−1,b2=2,c2=3,a1−a2=1, b1−b2=1,c1−c2=−1
⇒ a1+a2+a3=0,b1+b2+b3=0,
c1+c2+c3=12
∴ a1=0 ,b2=2 and c3=7
Hence, sum of diagonal elements
=0+2+7=9