<<23456>>
21.

 The area of the region bounded by x2 =4y, y=1, y=4 and the Y-axis lying  in the first quadrant is............. square units


A) $\frac{22}{3}$

B) $\frac{28}{3}$

C) 30

D) $\frac{27}{4}$



22.

A coin is tossed three times if X denotes the absolute difference between the number of heads and the number of heads and the number of tails, then P(X =1) = 


A) $\frac{1}{2}$

B) $\frac{2}{3}$

C) $\frac{1}{6}$

D) $\frac{3}{4}$



23.

The sum of the first 10 terms of the series 9+99+999+... is 


A) $\frac{9}{8}(9^{10}-1)$

B) $\frac{100}{9}(10^{9}-1)$

C) $(10^{9}-1)$

D) $\frac{100}{9}(10^{10}-1)$



24.

The equation of line passing through (3,-1,2) and perpendicular to the lines

 $\overrightarrow{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2\hat{i}-2\hat{j}+2\hat{k})$

 and $\overrightarrow{r}=(2\hat{i}+\hat{j}-3\hat{k})+\mu(\hat{i}-2\hat{j}+2\hat{k})$  is 


A) $\frac{x+3}{2}=\frac{y+1}{3}=\frac{z-2}{2}$

B) $\frac{x-3}{3}=\frac{y+1}{3}=\frac{z-2}{2}$

C) $\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-2}{2}$

D) $\frac{x-3}{2}=\frac{y+1}{2}=\frac{z-2}{3}$



25.

If  $A=\begin{bmatrix}1 & 2&3 \\-1 & 1&2\\ 1&2&4 \end{bmatrix}$ n , then (A2-5A)A-1


A) $\begin{bmatrix}4 &amp; 2&amp;3 \\-1 &amp; 4&amp;2\\ 1&amp;2&amp;1 \end{bmatrix}$

B) $\begin{bmatrix}-4 &amp; 2&amp;3 \\-1 &amp; -4&amp;2\\ 1&amp;2&amp;-1 \end{bmatrix}$

C) $\begin{bmatrix}-4 &amp; -1&amp;1 \\2 &amp; -4&amp;2\\ 3&amp;2&amp;-1 \end{bmatrix}$

D) $\begin{bmatrix}-1 &amp; -2&amp;1 \\4 &amp; -2&amp;-3\\ 1&amp;4&amp;-2 \end{bmatrix}$



<<23456>>