Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The equation of line passing through (3,-1,2) and perpendicular to the lines

 r=(ˆi+ˆjˆk)+λ(2ˆi2ˆj+2ˆk)

 and r=(2ˆi+ˆj3ˆk)+μ(ˆi2ˆj+2ˆk)  is 


A) x+32=y+13=z22

B) x33=y+13=z22

C) x32=y+13=z22

D) x32=y+12=z23

Answer:

Option C

Explanation:

 Direction ratio of line perpendicular to the lines  r=a1+λb1

 and  r=a2+μb2 is α(b1×b2)

     Direction ratio of line perpendicular to the lines

   r=(ˆi+ˆjˆk)+λ(2ˆi2ˆj+2ˆk)

and 

  r=(2ˆi+ˆj3ˆk)+μ(ˆi2ˆj+2ˆk)  is  

                                        α[ˆiˆjˆk221122]

 = α[(4+2)ˆi(41)ˆj+(4+2)ˆk]

    = α[2ˆi3ˆj2ˆk]

  Now, equation of line passing through (3,-1,2) and parallel to 2ˆi3ˆj2ˆk

 r=3ˆiˆj2ˆk+β(2ˆi+3ˆj+2ˆk)

 Hence, cartesian form of the above equation is 

x32=y+13=z22