Answer:
Option A
Explanation:
We have , $\frac{dx}{dy}=cos(x+y)$
Put , x+y=v
$\Rightarrow$ $\frac{dx}{dy}+1=\frac{dv}{dy}$
$\Rightarrow$ $\frac{dx}{dy}=\frac{dv}{dy}-1$
$\therefore$ Equation becomes
$\frac{dv}{dy}-1= \cos v$
$\Rightarrow$ $\frac{dv}{dy}=1+\cos v$
$\Rightarrow$ $\frac{dv}{1+\cos v}+dy$
$\Rightarrow$ $\frac{dv}{2\cos ^{2}\frac{v}{2}}=dy$
On integrating , we get
$\frac{1}{2}\int \sec^{2}\frac{v}{2}dv=\int dy$
$\Rightarrow$ $\tan\frac{v}{2}=y+C$
$\Rightarrow$ $\tan\left(\frac{x+y}{2}\right)=y+C$ [$\therefore$ v=x+y]