Answer:
Option B
Explanation:
Let ,
Sn= 9+99+999+.........n terms
⇒ Sn=(10−1)+(100−1)+(1000−1)+.... n terms
⇒ Sn=(10+102+103+....... n terms -(1+1+..... n terms)
⇒ Sn=10(10n−1)10−1−n
[a+ar+ar2+.....arn−1=a(rn−1r−1,r>1]
⇒ Sn=109(10n−1)−n
put n=10
⇒ S10=109(1010−1)−10
=109(1010−1−9)
=109(1010−10)=1009(109−1)