Answer:
Option B
Explanation:
We have,
x2=4y
y=1
y=4
and the Y-axis lying in the first quadrant.
$\therefore$ Required area = $\int_{1}^{4} \sqrt{4y}dy$
=$2\left[\frac{2}{3}y^{3/2}\right]_{1}^{4}=\frac{4}{3}[4^{3/2}-1]$
$\frac{4}{3}(8-1)=\frac{4}{3}\times 7=\frac{28}{3}$