Answer:
Option D
Explanation:
Let $P\left( \alpha, \beta, \gamma\right)$ and R is the image of P in the XY - plane.
$\therefore$ $R\left( \alpha, \beta, \gamma\right)$
Also, Q is the image of P in the plane x+y=3
$\therefore$ $\frac{x-\alpha}{1}= \frac{y-\beta}{1}=\frac{z-\gamma}{0}$
= $\frac{-2(\alpha+\beta-3)}{2}$
$x=3-\beta ,y=3-\alpha ,z=\gamma$
Since , Q is lies on Z-axis
$\therefore$ $\beta =3, \alpha =3 , z=\gamma$
$\therefore$ $ P (3,3, \gamma )$
Given , distance of P from X-axis be 5
$\therefore$ $5= \sqrt{3^{2}+\gamma^{2}}$
$25-9=\gamma^{2}$
$\Rightarrow$ $\gamma \pm 4$
Then , PR = $\mid2\gamma \mid =\mid 2\times 4\mid=8$