Answer:
Option B
Explanation:
We have , dydx=(2+5y)(5y−2)
⇒ dy25y2−4=dx
⇒ 125(dyy2−425)=dx
On integrating both sides, we get ,125∫dyy2−(25)2=∫dx
⇒ 125×12×2/5log∣y−2/5y+2/5∣=x+C
⇒ log∣5y−25y+2∣=20(x+C)
⇒ ∣5y−25y+2∣=Ae20x [ ∴ e^{20C}=A ]
when x=o \Rightarrow y =0 then A =1
\therefore \mid \frac{5y-2}{5y+2}\mid =e^{20x}
\lim_{x \rightarrow -\infty} \mid \frac{5f(x)-2}{ 5f(x)+2}\mid =\lim_{x \rightarrow -\infty}e^{20x}
\Rightarrow \Rightarrow \lim_{n \rightarrow -\infty} \mid \frac{5f(x)-2}{ 5f(x)+2}\mid =0
\Rightarrow \lim_{n \rightarrow -\infty} 5 f(x) -2=0
\Rightarrow \lim_{n \rightarrow -\infty} f(x) =\frac{2}{5}=0.4