Processing math: 64%


1)

Let f:RR be a differentiable function with f(0)=0,  y=f(x) satisfies the differential equation

 dydx=(2+5y)(5y2)  , then the value of  limxf(x)  is .............


A) 0.6

B) 0.4

C) 0.8

D) 0.1

Answer:

Option B

Explanation:

We have , dydx=(2+5y)(5y2)

     dy25y24=dx

     125(dyy2425)=dx

  On integrating both sides, we get ,125dyy2(25)2=dx

    125×12×2/5logy2/5y+2/5∣=x+C

  log5y25y+2∣=20(x+C)

     5y25y+2∣=Ae20x    [        e^{20C}=A ]

when x=o    \Rightarrow   y =0 then A =1

\therefore           \mid \frac{5y-2}{5y+2}\mid =e^{20x}

 \lim_{x \rightarrow -\infty} \mid \frac{5f(x)-2}{ 5f(x)+2}\mid =\lim_{x \rightarrow -\infty}e^{20x}

\Rightarrow    \Rightarrow \lim_{n \rightarrow -\infty} \mid \frac{5f(x)-2}{ 5f(x)+2}\mid =0

\Rightarrow  \lim_{n \rightarrow -\infty} 5 f(x) -2=0

\Rightarrow  \lim_{n \rightarrow -\infty} f(x) =\frac{2}{5}=0.4