Answer:
Option B
Explanation:
We have , dydx=(2+5y)(5y−2)
⇒ dy25y2−4=dx
⇒ 125(dyy2−425)=dx
On integrating both sides, we get ,125∫dyy2−(25)2=∫dx
⇒ 125×12×2/5log∣y−2/5y+2/5∣=x+C
⇒ log∣5y−25y+2∣=20(x+C)
⇒ ∣5y−25y+2∣=Ae20x [ ∴ e20C=A ]
when x=o ⇒ y =0 then A =1
∴ ∣5y−25y+2∣=e20x
limx→−∞∣5f(x)−25f(x)+2∣=limx→−∞e20x
⇒ ⇒limn→−∞∣5f(x)−25f(x)+2∣=0
⇒limn→−∞5f(x)−2=0
⇒limn→−∞f(x)=25=0.4