1)

Let X be a set with exactly 5 elements and Y be a set  exactly  7 elements. If α is the numbers of one - one functions from X to Y  and β is the number of onto functions from Y to X  , then the value of $\frac{1}{5!}(\beta -\alpha) $ is ............


A) 118

B) 119

C) 121

D) 115

Answer:

Option B

Explanation:

Given , X has exactly 5 elements and Y has exactly  7 elements.

                     n(X) =5
                     n(Y)  =7
Now ,number of  one-one  functions from  X to Y is
                    $\alpha = ^{7}P_{5} =^{7}C_{5}\times 5!$
   Number of onto functions from Y to X is  β
       229201987_circrl.JPG
1,1,1,1,3         or         1,1,1,2,2
 
$\beta =\frac{7!}{3!4!}\times 5! +\frac{7!}{(2!)^{3}3!}\times 5!$
         = $(^{7}C_{3}+3^{7}C_{3})5!=4\times ^{7}C_{3}\times 5!$
          $\frac{\beta -\alpha}{5!}=\frac{(4\times ^{7}C_{3}-^{7}C_{5})5!}{5!}$
             = $4\times 35-21=140-21=119$