1) Let $f:R\rightarrow R$ be a differentiable function with f(0) =1 and satisfying the equation f(x+y) =f(x) f ' (y)+ f ' (x) f(y) for all x , $y \in R $, Then, the value of loge (f(4)) is.............. A) 2 B) 6 C) 8 D) 4 Answer: Option AExplanation:Given, $ f(x+y) = f (x) f ' (y) +f '(x) f (y), \forall x,y \in R$ and f (0)=1 Put x=y=0, we get f(0) = f(0) f '(0) +f '(0) f (0) $\Rightarrow$ 1= 2 f '(0) $\Rightarrow$ f ' (0)= $\frac{1}{2}$ Put x=x and y=0 , we get f (x) = f (x) f '(0) + f '(x) f(0) $\Rightarrow$ $f (x)= \frac{1}{2} f(x)+f '(x)$ $\Rightarrow$ $f' (x)= \frac{1}{2} f(x) \Rightarrow \frac{f'(x)}{f(x)}=\frac{1}{2}$ On integrating , we get $\log_{}{f(x)}=\frac{1}{2}x+C$ $\Rightarrow$ $f (x)= Ae^{\frac{1}{2}x}$ where eC =A If f(0)=1 . then A=1 Hence, $f(x)= e^{\frac{1}{2}x}$ $\Rightarrow$ $\log_{e}{f(x)}=\frac{1}{2}x$$\Rightarrow$ $\log_{4}{f(4)}=\frac{1}{2}\times 4=2$