1)

Let  f:RR  be a differentiable function with f(0) =1 and satisfying the equation f(x+y) =f(x)  f ' (y)+ f ' (x) f(y)  for 

all x , yR, Then, the value of loge (f(4)) is..............


A) 2

B) 6

C) 8

D) 4

Answer:

Option A

Explanation:

Given, f(x+y)=f(x)f(y)+f(x)f(y),x,yR  and f (0)=1

Put x=y=0, we get

f(0) = f(0) f '(0) +f '(0) f (0)

      1= 2 f '(0)   f ' (0)= 12
 Put x=x and y=0 , we get
          f (x) = f (x) f '(0) + f '(x) f(0)
    f(x)=12f(x)+f(x)
    f(x)=12f(x)f(x)f(x)=12 
On integrating , we get
    logf(x)=12x+C
   f(x)=Ae12x where eC =A
  If  f(0)=1   . then A=1
  Hence,   f(x)=e12x
     logef(x)=12x
    log4f(4)=12×4=2