1) Let f:R→R be a differentiable function with f(0) =1 and satisfying the equation f(x+y) =f(x) f ' (y)+ f ' (x) f(y) for all x , y∈R, Then, the value of loge (f(4)) is.............. A) 2 B) 6 C) 8 D) 4 Answer: Option AExplanation:Given, f(x+y)=f(x)f′(y)+f′(x)f(y),∀x,y∈R and f (0)=1 Put x=y=0, we get f(0) = f(0) f '(0) +f '(0) f (0) ⇒ 1= 2 f '(0) ⇒ f ' (0)= 12 Put x=x and y=0 , we get f (x) = f (x) f '(0) + f '(x) f(0) ⇒ f(x)=12f(x)+f′(x) ⇒ f′(x)=12f(x)⇒f′(x)f(x)=12 On integrating , we get logf(x)=12x+C ⇒ f(x)=Ae12x where eC =A If f(0)=1 . then A=1 Hence, f(x)=e12x ⇒ logef(x)=12x⇒ log4f(4)=12×4=2