1)

Let P be a point in the first octant , whose image Q in the plane x+y= 3 (that is, the line segment PQ is perpendicular to the plane x+y=3 and the mid- point of PQ lies in the plane x+y=3) lies on the Z-axis. Let the distance of P from the X-axis be 5. If R is the image of P  in the XY-plane, then the length of PR is .....


A) 4

B) 6

C) 12

D) 8

Answer:

Option D

Explanation:

Let P(α,β,γ)  and R  is the image of P in the XY - plane.

  R(α,β,γ) 

   Also, Q is the image of P in the plane  x+y=3

   xα1=yβ1=zγ0

                     = 2(α+β3)2

           x=3β,y=3α,z=γ

 Since , Q is lies on Z-axis

    β=3,α=3,z=γ

     P(3,3,γ)

Given , distance of  P  from  X-axis  be 5

              5=32+γ2

                       259=γ2

     γ±4

Then  , PR = 2γ∣=∣2×4∣=8