<<345678>>
26.

For each t ε R, let [t] be the greatest integer less than or equal to t. Then,

$\lim_{x \rightarrow 0}x([\frac{1}{x}+[\frac{2}{x}]+......+[\frac{15}{x}])$


A) is equal to 0

B) is equal to 15

C) is equal to 120

D) does not exist (R)



27.

Let y= y(x) be the solution  of the different equation 

$\sin x\frac{dy}{dx}+ycosx=4x,x\epsilon (0,\pi)$. If  $y(\frac{\pi}{2})=0$, then $y(\frac{\pi}{6})$ is equal to


A) $\frac{4}{9\sqrt{3}}\pi^{2}$

B) $\frac{-8}{9\sqrt{3}}\pi^{2}$

C) $-\frac{8}{9}\pi^{2}$

D) $-\frac{4}{9}\pi^{2}$



28.

If sum of all the solutions of the equation

$8\cos x.( \cos ( \frac{\pi}{6}+x).\cos ( \frac{\pi}{6}-x)-\frac{1}{2})=1$ in [0,π ] is kπ , then k is equal to


A) $\frac{2}{3}$

B) $\frac{13}{9}$

C) $\frac{8}{9}$

D) $\frac{20}{9}$



29.

The Integral 

$\int_{}^{} \frac{\sin^{2}x cos^{2}x}{(\sin^{5}x+\cos^{3}x\sin^{2}x+\sin^{3}x\cos^{2}x+\cos^{5}x)^{2}}dx$

is equal to    (where C is constant of integration)


A) $\frac{1}{3( 1+tan^{3}x)}+C$

B) $\frac{-1}{3( 1+tan^{3}x)}+C$

C) $\frac{1}{ 1+\cot^{3}x}+C$

D) $\frac{-1}{ 1+\cot^{3}x}+C$



30.

The length of the projection of the line segment joining the points (5,-1,4) and (4,-1,3) on the plane , x+y+z=7 is


A) $\frac{2}{\sqrt{3}}$

B) $\frac{2}{3}$

C) $\frac{1}{3}$

D) $\sqrt{\frac{2}{3}}$



<<345678>>