Answer:
Option B
Explanation:
Key Idea Apply the identity
$\cos ( x+y)\cos ( x-y)=\cos^{2}x-\sin^{2}y$ and $\cos 3x=4\cos^{3}x-3\cos x$
We have,
$8\cos x (\cos ( \frac{\pi}{6} +x)\cos ( \frac{\pi}{6}-x)-\frac{1}{2})=1$
$\Rightarrow$ $8\cos x( \cos^{2}\frac{\pi}{2}-\sin^{2}x-\frac{1}{2})=1$
$\Rightarrow$ $8\cos x( \frac{3}{4}-\sin^{2}x-\frac{1}{2})=1$
$\Rightarrow$ $8\cos x( \frac{3}{4}-\frac{1}{2}-1+\cos^{2}x)=1$
$\Rightarrow$ $8\cos x(\frac{-3+4\cos^{2}x}{4})=1$
$\Rightarrow$ $2(4\cos^{3}x -3\cos x)=1$
$\Rightarrow$ $2\cos3x=1\Rightarrow\cos 3x=\frac{1}{2}$
$\Rightarrow$ \[3x=\frac{\pi}{3},\frac{5\pi}{3},\frac{7\pi}{3}\] [0≤ 3x ≤ 3π ]
$\Rightarrow$ $x= \frac{\pi}{9},\frac{5\pi}{9},\frac{7\pi}{9}$
Sum $= \frac{\pi}{9}+\frac{5\pi}{9}+\frac{7\pi}{9}=\frac{13\pi}{9}\Rightarrow k\pi =\frac{13\pi}{9}$
Hence k= $\frac{13}{9}$