Answer:
Option C
Explanation:
We have
sinxdydx+ycosx=4x
⇒ dydx+ycotx=4x×cosecx
This is a linear differential equation of form
dydx+Py=Q
where P= cot x, Q= 4x cosec x
Now, IF= e∫Pdx=ecotxdx=elogsinx=sinx
Solution of the differential equation is
y.sinx=∫4xcosecxsinxdx+C
⇒ ysinx=∫4xdx+C=2x2+C
Put x=π2,y=0, we get
C=−π22
⇒ ysinx=2x2−π22
Put x=π6
y(12)=2(π236)−π22
⇒ y=π29−π2
⇒ y=−8π29
Alternative method
We have , sinxdydx+ycosx=4x ,
which can be written as ddx(sinx.y)=4x
On integrating both sides, we get
∫ddx(sinx.y)dx=∫4x.dx
⇒ y.sinx=4x22+C
⇒ y.sinx=2x2+C
Now, as y=0 when x=π2
∴ C= −π22
⇒ y.sinx=2x2−π22
Now , putting x=π6, we get
y(12)=2(π236)−π22
y=π29−π2=−8π29