Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let y= y(x) be the solution  of the different equation 

sinxdydx+ycosx=4x,xϵ(0,π). If  y(π2)=0, then y(π6) is equal to


A) 493π2

B) 893π2

C) 89π2

D) 49π2

Answer:

Option C

Explanation:

We have

    sinxdydx+ycosx=4x

          dydx+ycotx=4x×cosecx

This is a linear differential equation of form

         dydx+Py=Q

where P= cot x, Q= 4x cosec x

Now,    IF= ePdx=ecotxdx=elogsinx=sinx

Solution of the differential equation is

                      y.sinx=4xcosecxsinxdx+C

      ysinx=4xdx+C=2x2+C

 Put   x=π2,y=0, we get

        C=π22

     ysinx=2x2π22

Put       x=π6

  y(12)=2(π236)π22

     y=π29π2

      y=8π29

Alternative method

We have ,  sinxdydx+ycosx=4x ,

which can be written as ddx(sinx.y)=4x

On integrating both sides, we get

      ddx(sinx.y)dx=4x.dx

     y.sinx=4x22+C

      y.sinx=2x2+C

Now, as y=0 when x=π2

  C= π22

   y.sinx=2x2π22

Now , putting  x=π6, we get

y(12)=2(π236)π22

  y=π29π2=8π29