Answer:
Option C
Explanation:
Key Idea Use property of greatest integer function [x]= x - {x}
We have,
limx→0x([1x+[2x]+......+[15x])
we know, [x]= x - {x}
∴ [1x]=1x−{1x}
Similarly, [nx]=nx−{nx}
∴ Given limit
=limx→0x(1x−{1x}+2x−{2x}+....15x−{15x})
=limx→0(1+2+3+...+15)−x({1x}+{2x}+.....+{15x})
=120-0=120
[∵0≤{nx}<1,therefore0≤x{nx}<x⇒limx→0x{nx}=0]