Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

For each t ε R, let [t] be the greatest integer less than or equal to t. Then,

limx0x([1x+[2x]+......+[15x])


A) is equal to 0

B) is equal to 15

C) is equal to 120

D) does not exist (R)

Answer:

Option C

Explanation:

Key Idea Use   property of greatest integer  function [x]= x - {x}

We have,

        limx0x([1x+[2x]+......+[15x])

we know,    [x]= x - {x}

       [1x]=1x{1x}

Similarly,      [nx]=nx{nx}

     Given limit  

   =limx0x(1x{1x}+2x{2x}+....15x{15x})

    =limx0(1+2+3+...+15)x({1x}+{2x}+.....+{15x})

   =120-0=120

[0{nx}<1,therefore0x{nx}<xlimx0x{nx}=0]