Answer:
Option C
Explanation:
Key Idea Use property of greatest integer function [x]= x - {x}
We have,
$\lim_{x \rightarrow 0}x([\frac{1}{x}+[\frac{2}{x}]+......+[\frac{15}{x}])$
we know, [x]= x - {x}
$\therefore$ $[\frac{1}{x}]=\frac{1}{x}-\left\{\frac{1}{x}\right\}$
Similarly, $[\frac{n}{x}]=\frac{n}{x}-\left\{\frac{n}{x}\right\}$
$\therefore$ Given limit
$=\lim_{x \rightarrow 0}x \left(\frac{1}{x}-\left\{\frac{1}{x}\right\}+\frac{2}{x}-\left\{\frac{2}{x}\right\}+ ....\frac{15}{x}-\left\{\frac{15}{x}\right\}\right)$
$=\lim_{x \rightarrow 0}(1+2+3+...+15) -x\left(\left\{\frac{1}{x}\right\}+\left\{\frac{2}{x}\right\}+.....+\left\{\frac{15}{x}\right\}\right)$
=120-0=120
$\begin{bmatrix}\because 0\leq\left\{\frac{n}{x}\right\}<1,therefore \\0\leq x \left\{\frac{n}{x}\right\}< x \Rightarrow\lim_{x \rightarrow 0} x \left\{\frac{n}{x}\right\}=0 \end{bmatrix}$