1)

The Integral 

$\int_{}^{} \frac{\sin^{2}x cos^{2}x}{(\sin^{5}x+\cos^{3}x\sin^{2}x+\sin^{3}x\cos^{2}x+\cos^{5}x)^{2}}dx$

is equal to    (where C is constant of integration)


A) $\frac{1}{3( 1+tan^{3}x)}+C$

B) $\frac{-1}{3( 1+tan^{3}x)}+C$

C) $\frac{1}{ 1+\cot^{3}x}+C$

D) $\frac{-1}{ 1+\cot^{3}x}+C$

Answer:

Option B

Explanation:

We have

I= $\int_{}^{} \frac{\sin^{2}x cos^{2}x}{(\sin^{5}x+\cos^{3}x\sin^{2}x+\sin^{3}x\cos^{2}x+\cos^{5}x)^{2}}dx$

$\int_{}^{}\frac{\sin^{2}x cos^{2}x}{( \sin^{3}x( \sin^{2}x+\cos^{2}x)+\cos^{3}x( \sin^{2}x+\cos^{2}x))^{2}}dx$

= $\int_{}^{}\frac{\sin^{2}x cos^{2}x}{( \sin^{3}x+\cos^{3}x)^{2}}dx$

= $\int_{}^{}\frac{\sin^{2}x cos^{2}x}{\cos^{6}x( 1+\tan^{3}x)^{2}}dx$

= $\int_{}^{} \frac{\tan^{2}x\sec^{2}x}{( 1+\tan^{3}x)^{2}}dx$

  Put  $\tan^{2}x=1\Rightarrow 3\tan^{3}x \sec^{2}x dx=dt$

$\therefore $      $I=\frac{1}{3}\int_{}^{} \frac{dt}{( 1+t)^{2}}$

$\Rightarrow$     I=  $\frac{-1}{3( 1+t)}+C$

$\Rightarrow$    $I= \frac{-1}{3( 1+\tan^{3}x)}+C$