Answer:
Option B
Explanation:
We have
I= ∫sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx
∫sin2xcos2x(sin3x(sin2x+cos2x)+cos3x(sin2x+cos2x))2dx
= ∫sin2xcos2x(sin3x+cos3x)2dx
= ∫sin2xcos2xcos6x(1+tan3x)2dx
= ∫tan2xsec2x(1+tan3x)2dx
Put tan2x=1⇒3tan3xsec2xdx=dt
∴ I=13∫dt(1+t)2
⇒ I= −13(1+t)+C
⇒ I=−13(1+tan3x)+C