Answer:
Option B
Explanation:
Any line parallel to $\frac{x}{1}=\frac{y}{4}=\frac{z}{5}$ passing through P (1, -2,3) is
$\frac{x-1}{1}=\frac{y+2}{4}=\frac{z-3}{5} =\lambda (say)$
Any point on above line can be written as (λ +1, 4λ-2, 5λ+3)
$\therefore$ Coordinates of R are
(λ +1, 4λ-2, 5λ+3)
Since, point R lies on the above plane
$\therefore$ 2(λ+1)+3(4λ-2)-4(5λ +3) +22=0
$\Rightarrow$ λ =1
So, point R is (2,2,8)
Now, PR= $\sqrt{(2-1)^{2}+(2+2)^{2}+(8-3)^{2}}$
=$\sqrt{42}$
$\therefore$ PQ= 2PR= $2\sqrt{42}$