Answer:
Option A
Explanation:
We have
(2+sinx)dydx+(y+1)cosx=0
⇒dydx+cosx2+sinxy=−cosx2+sinx
which is a linear differential equation
∴ IF= e∫cosx2+sinxdx=elog(2+sinx)
= 2+ sin x
∴ Required solution is given by
y+(2+sinx) = ∫−cosx2+sinx.(2+sinx)dx+C
⇒y(2+sinx)=−sinx+C
Also y(0) =1
∴ 1(2+sin0)=−sin0+C
⇒ C=2
∴ y=2−sinx2+sinx
⇒ y(π2)=2−sinπ22+sinπ2=13