Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If (2+sinx)dydx+(y+1)cosx=0 and y(0)=1, then y(π2) is equal to 


A) 13

B) 23

C) 13

D) 43

Answer:

Option A

Explanation:

We have 

   (2+sinx)dydx+(y+1)cosx=0

dydx+cosx2+sinxy=cosx2+sinx

which is a linear differential equation

     IF= ecosx2+sinxdx=elog(2+sinx)

                      = 2+ sin x

      Required solution is given by

               y+(2+sinx)  = cosx2+sinx.(2+sinx)dx+C

  y(2+sinx)=sinx+C

                            Also y(0)  =1

     1(2+sin0)=sin0+C

       C=2

                             y=2sinx2+sinx

          y(π2)=2sinπ22+sinπ2=13