Answer:
Option A
Explanation:
Let y= $tan^{-1}(\frac{6x\sqrt{x}}{1-9x^{3}})$
= $tan^{-1}(\frac{2.(3x^{\frac{3}{2}})}{1-(3x^{\frac{3}{2}})^{2}}]$
= $2\tan^{-1}(3x^{\frac{3}{2}})$
[$\because 2 tan^{-1}x= \tan^{-1}\frac{2x}{1-x^{2}}$]
$\therefore \frac{\text{d}y}{\text{d}x}=2.\frac{1}{1+(3x^{\frac{3}{2}})^{2}}.3\times \frac{3}{2}x^{\frac{1}{2}}$
= $\frac{9}{1+9x^{3}}.\sqrt{x}$
g(x) = $\frac{9}{1+9x^{3}}$