Answer:
Option D
Explanation:
Required area
$=\int_{0}^{1} (1+\sqrt{x})dx +\int_{1}^{2}(3-x)dx-\int_{0}^{2}\frac{x^{2}}{4}dx $
= $=[ x+\frac{x^{\frac{3}{2}}}{3/2}]_{0}^{1}+[3x-\frac{x^{2}}{2}]_{1}^{2}- [\frac{x^{3}}{12}]_{0}^{2}$
$=(1+\frac{2}{3})+(6-2-3+\frac{1}{2})-(\frac{8}{12})$
$=\frac{5}{3}+\frac{3}{2}-\frac{2}{3}=1+\frac{3}{2}=\frac{5}{2} sq. units$