1)

Let a vertical tower AB have its end A on the level ground. Let C be the mid-pont of AB and P be a point on the ground such that AP=2AB. If  BPC= β , then tanβ is equal to


A) 67

B) 14

C) 29

D) 49

Answer:

Option C

Explanation:

LET AB= h, then AD= 2h, and AC=BC= h2

  Again , let  CPA= α

21112019483_TRIANG.PNG

 Now. in ΔABP

   tan(α+β)=ABAP=h2h=12

Also, in Δ ACP, tanα=ACAP=h22h=14

Now, tanβ=tan[(α+β)α]

                   =tan(α+β)tanα1+tan(α+β)tanα

=12141+12×14=1498=29