Answer:
Option C
Explanation:
LET AB= h, then AD= 2h, and AC=BC= $\frac{h}{2}$
Again , let $\angle$ CPA= α
Now. in ΔABP
$\tan(\alpha+\beta)=\frac{AB}{AP}=\frac{h}{2h}=\frac{1}{2}$
Also, in Δ ACP, $\tan\alpha=\frac{AC}{AP}=\frac{\frac{h}{2}}{2h}=\frac{1}{4}$
Now, $\tan\beta=\tan[(\alpha+\beta)-\alpha]$
$=\frac{\tan(\alpha+\beta)-\tan\alpha}{1+\tan(\alpha+\beta)\tan\alpha}$
$=\frac{\frac{1}{2}-\frac{1}{4}}{1+\frac{1}{2}\times\frac{1}{4}}=\frac{\frac{1}{4}}{\frac{9}{8}}=\frac{2}{9}$