<<12345>>
11.

The area (in sq units) of the region ${(x,y):y^{2}\geq2x, and x^{2}+y^{2}\leq 4x, x\geq0, and  y\geq 0}$ is


A) $\pi-\frac{4}{3}$

B) $\pi-\frac{8}{3}$

C) $\pi-\frac{4\sqrt{2}}{3}$

D) $\frac{\pi}{2}-\frac{2\sqrt{2}}{3}$



12.

$\lim_{n \rightarrow \infty}[\frac{(n+1)(n+2)...3n}{n^{2n}}]^{1/n}$ is equal to 


A) $\frac{18}{e^{4}}$

B) $\frac{27}{e^{2}}$

C) $\frac{9}{e^{2}}$

D) 3 log 3-2



13.

The intergral $\int_{}^{}\frac{2x^{12}+5x^{9}}{(x^{5}+x^{3}+1)^{3}} dx$ is equal to 

where C is an arbitrary constant


A) $\frac{-x^{5}}{(x^{5}+x^{3}+1)^{2}} +C$

B) $\frac{x^{10}}{2(x^{5}+x^{3}+1)^{2}} +C$

C) $\frac{x^{5}}{2(x^{5}+x^{3}+1)^{2}} +C$

D) $\frac{-x^{10}}{2(x^{5}+x^{3}+1)^{2}} +C$



14.

A wire of length 2 units is cut into two parts which are bent respectively to form a square of side =x units and a circle of radius =r units. If the sum of the areas of the square and the circle so formed is minimum, then


A) $2x=(\pi+4)r$

B) $(4-\pi)x+4)=\pi r$

C) x=2r

D) 2x=r



15.

 Consider $f(x)= tan^{-1}\sqrt{\frac{1+\sin x}{1-\sin x}},x\epsilon(0,\frac{\pi}{2})$. A normal to y= f(x) at x= $\frac{\pi}{6}$ also passes through the point


A) (0,0)

B) $(0,\frac{2\pi}{3})$

C) $(\frac{\pi}{6},0)$

D) $(\frac{\pi}{4},0)$



<<12345>>