Answer:
Option B
Explanation:
Let $I=\int_{}^{} \frac{2x^{2}+5x^{9}}{(x^{5}+x^{3}+1)^{3}}dx$
$=\int_{}^{} \frac{2x^{12}+5x^{9}}{x^{15}(1+x^{-2}+x^{-5})^{3}}dx$
$=\int_{}^{} \frac{2x^{-3}+5x^{-6}}{(1+x^{-2}+x^{-5})^{3}}dx$
Now put 1+x-2+x-5=t
$\Rightarrow (-2x^{-3}-5x^{-6})dx= dt$
$\Rightarrow (2x^{-3}+5x^{-6})dx=- dt$
$\therefore I= -\int_{}^{} \frac{dt}{t^{3}}=-\int_{}^{} t^{-3}dt$
$=-\frac{t^{-3+1}}{-3+1}+C= \frac{I}{2t^{2}}+C$
$\frac{x^{10}}{2(x^{5}+x^{3}+1)^{2}}+C$