Answer:
Option C
Explanation:
According to the given information, we have
the perimeter of square + perimeter of circle=2 units
$\Rightarrow 4x+2\pi r=2\Rightarrow r=\frac{1-2x}{\pi}..(i)$
Now, let A be the sum of the areas of the square and the circle, Then
$A=x^{2}+\pi r^{2}$
$A(x)=x^{2}+\pi\frac{(1-2x)^{2}}{\pi^{2}}$
$\Rightarrow x^{2}+\frac{(1-2x)^{2}}{\pi^{}}$
Now, for minimum value of A(x). $\frac{\text{d}A}{\text{d}x}=0$
$\Rightarrow 2x+\frac{2(1-2x)}{\pi}.(-2)=0$
$\Rightarrow x=\frac{2-4x}{\pi}$
$\Rightarrow \pi x+4x=2$
$\Rightarrow x=\frac{2}{\pi+4}$ .........(ii)
Now, from Eq.(i), we get
$r=\frac{1-2.\frac{2}{\pi+4}}{\pi}$
$r=\frac{\pi+4-4}{\pi(\pi+4)}=\frac{1}{\pi+4}$ ..........(iii)
From Eq(ii) and (iii)
we get x=2r