Answer:
Option B
Explanation:
Given the equation of curve are
$y^{2}=2x$ ........(i)
which is parabola with vertex (0,0) and axis parallel to X-axis
and x2+y2 =4x
which is circle with centre (2,0) and radius=2 .......(ii)
on substuting y2=2x in Eq (ii) we get
x2+2x= 4x
$\Rightarrow x^{2}=2x$
$\Rightarrow x=0$
or x=2
$\Rightarrow y=0 $ or $y=\pm2$ [ using Eq.. (i)]
Now, the required area is the area of shaded region . ie,
Required area= $\frac{Area of a circle}{4}$- $\int_{0}^{2} \sqrt{2x}dx$
$\frac{\pi(2)^{2}}{4}-\sqrt{2}\int_{0}^{2} x^{\frac{1}{2}}dx$
$\pi -\sqrt{2}\left[\frac{x^{\frac{3}{2}}}{{\frac{3}{2}}}\right]_0^2$
$=\pi -\frac{2\sqrt{2}}{3}[2\sqrt{2}-0]$
$=(\pi -\frac{8}{3})$ sq units