Answer:
Option B
Explanation:
We have
f(x)=tan−1√1+sinx1−sinx,xϵ(0,π2)
f(x)=tan−1√(cosx2+sinx2)2(cosx2−sinx2)2
f(x)=tan−1(cosx2+sinx2cosx2−sinx2)
( cosx2>sinx2for 0<x2.π4
=tan−1(1+tanx21−tanx2)
=tan−1[tan(π4+x2)]=π4+x2
⇒f′(x)=12⇒f′(π6)=12
Now, equation of normal at x= π6 is given by
(y−f(π6))=−2(x−π6)
⇒(y−π3)=−2(x−π6)
[∵f(π6)=π4+π12=4π12=π3
which passes through (0, 2π3)