Answer:
Option B
Explanation:
Let l=limn→∞[(n+1)(n+2)...3nn2n]1/n
limn→∞[(n+1)(n+2)...(n+2n)n2n]1/n
limn→∞[(n+1n)(n+2n)....(n+2nn)]1n
On taking long both sides, we get
logI=limn→∞1n[log(1+1n)(1+2n).....(1+2nn)]
⇒logl=limn→∞1n [log(1+1n)+log(1+2n)+.....+log(1+2nn)]
⇒logl=limn→∞1n∑2nr=1log(1+rn)
⇒logl=∫20log(1+x)dx
⇒logl=[log(1+x).x−∫11+x.xdx]20
⇒logl=[log(1+x).x]02−∫20x+1−x1+x.xdx
⇒logl=2.log3−∫20(1−11+X)dx
⇒logl=2.log3−[x−log∣1+x∣]20
Rightarrowlogl=2.log3−[2−log3]
⇒logl=3.log3−2
⇒logl=.log27−2
∴l=elog27−2=27.e−2
=27e2