Processing math: 100%


1)

limn[(n+1)(n+2)...3nn2n]1/n is equal to 


A) 18e4

B) 27e2

C) 9e2

D) 3 log 3-2

Answer:

Option B

Explanation:

Let l=limn[(n+1)(n+2)...3nn2n]1/n

limn[(n+1)(n+2)...(n+2n)n2n]1/n

limn[(n+1n)(n+2n)....(n+2nn)]1n

On taking long both sides, we get

   logI=limn1n[log(1+1n)(1+2n).....(1+2nn)]

logl=limn1n   [log(1+1n)+log(1+2n)+.....+log(1+2nn)]

logl=limn1n2nr=1log(1+rn)

logl=20log(1+x)dx

logl=[log(1+x).x11+x.xdx]20

logl=[log(1+x).x]0220x+1x1+x.xdx

logl=2.log320(111+X)dx

logl=2.log3[xlog1+x]20

Rightarrowlogl=2.log3[2log3]

logl=3.log32

logl=.log272

l=elog272=27.e2

 =27e2