Answer:
Option A,B,C,D
Explanation:
Concept involved
use of Newton Leibnitz formula
$\frac{d}{dx}\left\{\int_{f(x)}^{g(x)} \phi (t) dt\right\}=\phi(g(x)).g'(x)-\phi (f(x)).f'(x)$
Sol. Here, $f(x) =\int_{0}^{x} e^{t^{2}} (t-2)(t-3) dt$
$\Rightarrow$ $f'(x)=e^{x^{2}} (x-2)(x-3)$
$\therefore$ maximum at x=2
minimum at x=3
decreasing on (2,3)
Also, f'(x)=0 has two roots x=2 and x=3
i.e, $f'(2)=f'(3)=0$
Thus, by rolle's theorm
$f"(c)=0 $ must have atleast one root $\epsilon (2,3)$