1) For every integer n, let an and bn be real numbers. Let function f:R→R be given by f(x)={an+sinπxforxϵ[2n,2n+1]bn+cosπxforxϵ(2n−1,2n) for all integers n, If f is continuous , then which of the following hold9s) for all n? A) an−1−bn−1=0 B) an−bn=1 C) an−bn+1=1 D) an−1−bn=−1 Answer: Option B,DExplanation:f(2n)=an,f(2n+)=an f(2n−)=bn+1 ⇒ an−bn=1 f(2n+1)=an f((2n+1)−)=an f((2n+1)+)=bn+1−1 ⇒ an=bn+1−1 or an−bn+1=−1 or an−1−bn=−1