Answer:
Option A,D
Explanation:
Concept involved if $|A_{n xn}|=\triangle$, then $|adj A|= \triangle ^{n-1}$
So., Here,$adj P_{3x3}$=$\begin{bmatrix}1 & 4&4 \\2 & 1&7\\1&1&3 \end{bmatrix}$
$\Rightarrow$ $|adj P|=|P|^{2}$
$\therefore$ $|adj P|$= $\begin{bmatrix}1 & 4&4 \\2 & 1&7\\1&1&3 \end{bmatrix}$
=1(3-7)-4(6-7)+4(2-1)
=-4+4+4=4
|P|= $\pm 2$