Answer:
Option B
Explanation:
Here area between 0 to b is $R_{1}$ and b to 1 is $R_{2}$
$\therefore$ $\int_{0}^{b} (1-x)^{2}dx-\int_{b}^{1} (1-x)^{2}dx=\frac{1}{4}$
$\Rightarrow$ $\left(\frac{(1-x)^{3}}{-3}\right)_{0}^{b}-\left(\frac{(1-x)^{3}}{-3}\right)^{1}_{b}=\frac{1}{4}$
$\Rightarrow$ $-\frac{1}{3}{(1-b)^{3}-1})+\frac{1}{3}(0-(1-b)^{3})=\frac{1}{4}$
$\Rightarrow$ $-\frac{2}{3}(1-b)^{3}=-\frac{1}{3}+\frac{1}{4}=-\frac{1}{12}$
$\Rightarrow$ $(1-b)^{3}=\frac{1}{8}$
$\Rightarrow$ $(1-)=\frac{1}{2} \Rightarrow b= \frac{1}{2}$